ผลการวิเคราะห์และอภิปรายข้อมูล

ข้อมูลในส่วนของรายงานวิจัยบทนี้ได้นำเสนอผลการวิเคราะห์ข้อมูลด้วยการศึกษาของไหล พลศาสตร์ โดยเป็นรูปแบบไฟไนต์โวลุ่ม และอาศัยแบบจำลองที่มีระดับความน่าเชื่อถือหลากหลาย ระดับ คือ the high Re k-**ɛ** model ซึ่งเทอมความสัมพันธ์ระหว่างความเค้นเรย์โนลด์กับค่าเฉลี่ย ความเค้นเนื่องจากการเฉือนระหว่างเลเยอร์ของไหลเป็นแบบเส้นตรง (linear eddy viscosity model) และพาราโบลา (quadratic eddy viscosity model) อีกทั้งได้ทำการวิเคราะห์จาก แบบจำลองที่มีความแม่นยำที่สูง คือ the Reynolds Stress Model ซึ่งเป็นการสร้างแบบจำลอง ของลักษณะกายภาพการไหลแต่ละองค์ประกอบขึ้นมา ซึ่งมีผลต่อการปรับปรุงขนาดความเค้นเรย์ โนลด์ให้มีความแม่นยำขึ้น ผลการวิเคราะห์นี้ได้มีความเกี่ยวข้องกับการไหลที่สภาวะเรย์โนลด์ตั้งแต่ 10,000 ถึง 583,000 ซึ่งสอดคล้องกับการศึกษาเชิงทดลองและการศึกษาเชิงคำนวณก่อนหน้า

เนื่องจากของไหลมีการพาและไหลผ่านวัตถุทรงกลมที่หยุดนิ่งและหมุน ซึ่งลักษณะผิวของ ทรงกลมจะมีลักษณะผิวโค้งจะมีการส่งผลต่อการก่อเกิดอัตราการเปลี่ยนแปลงความเค้นเฉือนในทิศ ทางการขนานผิวสัมผัสที่รวดเร็วมาก อีกทั้งมีการเปลี่ยนขนาดความโค้งทุกทิศทางก่อให้รูปแบบการ ไหลมีความซับซ้อนมากเมื่อเปรียบเทียบกับการไหลผ่านทรงกระบอกซึ่งทุกระนาบในแนวแกนหมุนมี ความสมมาตรกันทุกระนาบ ซึ่งการวิเคราะห์เชิงคำนวณนี้จะช่วยให้สามารถพิจารณาโครงสร้างการ ไหลได้ทดแทนข้อจำกัดการดำเนินการจากการทดลองที่ไม่สามารถแสดงบางพฤติกรรมและ รายละเอียดที่ซับซ้อนได้

5.1. แรงพลศาสตร์ที่กระทำกับทรงกลม

เมื่อพิจารณาค่าเวลาเฉลี่ยของแรงกระทำกับทรงกลมสามารถแสดงขนาดของแรงยกและแรง ต้านที่กระทำกับทรงกลมในแต่ละสภาวะเรย์โนลด์และอัตราการหมุนไร้หน่วย ดังนี้

5.1.1 สภาวะเรย์โนลด์ที่ 10,000 (ช่วง sub-critical Reynolds number) สอบเทียบด้วยผลการ ทดลองและการศึกษาเชิงคำนวณด้วยวิธี the Large Eddy Simulation method (LES)

1) ค่าเวลาเฉลี่ยของสัมประสิทธิ์แรงยกของอากาศพลศาสตร์ ไหลผ่านทรงกลมที่สภาวะหยุดนิ่ง (**α** = 0, ด้านซ้าย) และอัตราการไหลไร้หน่วยที่ 5 (**α** = 5, ด้านขวา) ของแต่ละแบบจำลองคณิตศาสตร์ the Navier-Stokes (Laminar) Equation และ the Reynolds Stress Model ดังภาพที่ 5.1

<u>สมการ the Reynolds Stress Model</u>

ภาพที่ 5.1 ค่าเวลาเฉลี่ยของสัมประสิทธิ์แรงยกที่สภาวะเรย์โนลด์ 10,000 วิเคราะห์ผลโดยแบบจำลองสมการ the (ก) Navier-Stokes Equation และ (ข) Reynolds Stress Model

ภาพที่ 5.1 แสดงถึงรูปแบบของสัมประสิทธิ์แรงยกที่กระทำกับวัตถุทรงกลมในระนาย 3 มิติ นั้นมีความกวัดแกว่งที่มากซึ่งระดับความกว้างของแต่ละแอมปลิจูดนั้นมีความเกี่ยวข้องกับพิสัยความ ดันที่เกิดรอบตัวทรงกลมนั้น หากมีพิสัยของความดันระหว่างด้านขอบบน (ด้านหน่วงความเร็วของ ของไหลเนื่องจากทรงกลม) กับด้านขอบล่าง (ด้านเสริมความเร็วของของไหลเนื่องจากทรงกลม) มาก จะส่งผลให้มีความกว้างของแอมปลิจูดที่มาก สำหรับความไร้รูปร่างของกราฟสัมประสิทธิ์แรงยกในแต่ ละช่วงเวลาของการไหลมีความแปรปรวนที่สูงเนื่องจากผลของพฤติกรรมการไหลใน 3 มิติที่เกิดขึ้นทำ ให้มีการไหลในทิศทางแกนหมุนซึ่งมีลักษณะเป็นแบบไร้รูปร่างที่แน่นอน หรือไม่สามารถทำการสุ่มได้ ซึ่งมีความแตกต่างกับการไหลผ่านวงกลมในระนาบ 2 มิติ ที่จะมีรูปร่างที่แน่นอน (Kray, Franke, & Frank, 2012) โดยแบบจำลองทางคณิตศาสตร์ the Navier-Stokes Equation และ Reynolds Stress Model ได้แสดงถึงการกวัดแกว่งของกราฟแสดงผลที่ไร้รูปร่างซึ่งแสดงถึงการแสดงพฤติกรรม ที่อยู่นอกช่วงการไหลวิกฤติ (the critical Reynolds number range) ซึ่งเกิดการแผ่เส้นทางกระแส วนทั้งขอบด้านและขอบบนของทรงกลม

2) ค่าเวลาเฉลี่ยของสัมประสิทธิ์แรงต้านของอากาศพลศาสตร์ ไหลผ่านทรงกลมที่สภาวะหยุดนิ่ง (α
= 0, ด้านซ้าย) และอัตราการไหลไร้หน่วยที่ 5 (α = 5, ด้านขวา) ของแบบจำลองคณิตศาสตร์ the Navier-Stokes Equation และ the Reynolds Stress Model

สมการ the Navier-Stokes (Laminar) Equation

(ข)

ภาพที่ 5.2 ค่าเวลาเฉลี่ยของสัมประสิทธิ์แรงต้านที่สภาวะเรย์โนลด์ 10,000 วิเคราะห์ผลโดยแบบจำลองสมการ the (ก) Navier-Stokes Equation และ (ข) Reynolds Stress Model

ภาพที่ 5.2 แสดงถึงสัมประสิทธิ์แรงด้านที่ของไหลกระทำกับทรงกลม ลักษณะของกราฟ ยังคงมีความไร้รูปร่างที่แน่นอน ซึ่งเป็นในแนวทางเดียวกันกับสัมประสิทธิ์แรงยกแต่ขนาดของแอม ปลิจูดของสัมประสิทธิ์แรงด้านในแต่ละช่วงเวลาที่เกิดขึ้นนั้นมีขนาดที่ต่ำกว่าอันเนื่องมาจากการแผ่ ขยายของกระแสลมวนจากขอบบนและขอบล่างที่สลับไปมานั้นแผ่ออกไปสู่ผิวด้านหลังของทรงกลม ก่อให้เกิดพิสัยความแตกต่างระหว่างความดันด้านหน้าและด้านหลังทรงกลมในแต่ละช่วงเวลาไม่มาก นัก อย่างไรก็ตามยังพบว่าหากทรงกลมมีการหมุนด้วยอัตราการหมุนไร้หน่วยถึง 5 แล้วก็ยังไม่ทำให้ การไหลอยู่ในสภาวะคงตัวเนื่องจากรูปร่างของกราฟยังไม่เป็นเส้นตรง

3) ผลการสอบเทียบแรงพลศาสตร์ที่สภาวะท<mark>รง</mark>กลมหยุดนิ่ง

เมื่อทำการสอบเทียบการไหลผ่านวัตถุทรงกลมที่สภาวะหยุดนิ่งกับ การทดลองก่อนหน้า (Achenbach, 1972) (Sareen et al., 2019) และการวิเคราะห์แบบจำลองทางคณิตศาสตร์ด้วยวิธี Large Eddy Simulation (LES) ที่มีความแม่นยำที่สูง (Poon et al., 2009) (Constantinescu & Squires, 2003) ดังตารางที่ 5.1 เพื่อใช้ในการวิเคราะห์การไหลผ่านวัตถุทรงกลมที่หมุนที่สภาวะเรย์ โนลด์ 10,000 พบว่า แบบจำลองการไหล the Navier-Stokes Equation และ the Reynolds Stress model ให้ผลการสอบเทียบที่ดีเพราะได้ค่าสัมประสิทธิ์แรงยกและแรงต้านที่ใกล้เคียงกับค่า อ้างอิงสอบเทียบ สำหรับแบบจำลองการไหลปั่นป่วน the Linear และ Quadratic high Re k-**E** model ให้ค่าสัมประสิทธิ์แรงยกที่แสดงถึงการไหลผ่านมีความไม่สมมาตรรอบแกนขนานกับทิศ ทางการไหลมาก โดยเฉพาะ the Quadratic high Re k-**E** model ซึ่งค่าสัมประสิทธิ์แรงยกขนาดนี้ แสดงถึงการแผ่ขยายของกระแสลมวนเพียงด้านเดียวมีรูปแบบการไหลคล้ายกับสภาวะช่วงเรย์โนลด์ วิกฤติ

ตารางที่ 5.1 สัมประสิทธิ์แรงยกและแรงต้านที่การไหลผ่านทรงกลมหยุดนิ่งในการวิเคราะห์ที่สภาวะเรย์โนลด์ 10,000

ยลงามปีอัย	สัมประสิทธิ์แรงพลศาสตร์		
MUN 118 9.40	แรงยก	แรงต้าน	
Experiment: Achenbach (1972)	ไม่แสดงผล	0.41	
Experiment: Sareen et al (2019) Re 27,500	0.00	0.54	
the LES simulation: Poon <i>et al.</i> (2009)	0.00	0.39	
the LES simulation: Constantinescu and Squires (2003)	0.00	0.39	
(งานวิจัยนี้)			
the Navier - Stoke Equation (Laminar Model)	0.00	0.48	
the Linear high Re k- $m{arepsilon}$ Model ประกอบด้วย สมการที่ผิว standard wall function	-0.06	0.37	

the Quadratic high Re k- $m{\epsilon}$ Model ประกอบด้วย สมการที่ผิว standard wall	0.21	0.42
function		
the Reynolds Stress Model ประกอบด้วย สมการที่ผิว standard wall function	0.00	0.48

4) ผลวิเคราะห์แรงพลศาสตร์ที่สภาวะทรงกลมหมุน

การวิเคราะห์แรงพลศาสตร์ที่กระทำกับทรงกลมที่หมุนนั้นแสดงดังภาพที่ 5.3 โดยเมื่อทำการ วิเคราะห์สัมประสิทธิ์แรงยกที่เกิดขึ้นในสภาวะการหมุนไร้หน่วยถึง 5 นั้น แต่ละแบบจำลองได้แสดง ถึงค่าสัมประสิทธิ์แรงยกที่มีขนาดสูงสุดอยู่ที่อัตราการหมุนไร้หน่วยที่ไม่เกิน 2 ซึ่งเป็นข้อมูลที่สำคัญใน การใช้ออกแบบอัตราการหมุนใช้งานที่ได้งานที่ต้องการโดยไม่ฟุ่มเฟือยการหมุนที่เร็วเกินไป โดยมี กราฟที่วิเคราะห์ได้เป็นไปในแนวทางเดียวกันกับการทดลองของ Sareen *et al.* (2019) อย่างไรก็ ตามพบว่าการไหลผ่านทรงกลมที่หมุนนั้นขนาดสัมประสิทธิ์แรงยกที่เกิดขึ้นถือว่ามีปริมาณน้อยไม่เกิน 1 เมื่อเปรียบเทียบการไหลผ่านวัตถุทรงกระบอกที่หมุนดังข้อมูลในรายงานวิจัยบทที่ 2

สำหรับการวิเคราะห์สัมประสิทธิ์แรงต้านที่สภาวะอัตราการหมุนไร้หน่วยต่ำกว่า 2 ทุก แบบจำลองการไหลปั่นป่วนให้ผลลัพธ์ค่าที่ใกล้เคียงกับการทดลองของ Sareen *et al.* (2019) และที่ อัตราการหมุนไร้หน่วยสูงกว่านั้นการวิเคราะห์ผลด้วย the Linear และ Quadratic high-Re k-**E** Model ค่อนข้างใกล้เคียงกัน และการวิเคราะห์การไหลด้วย the Navier-Stokes Equation และ the Reynolds Stress Model ก็ให้ผลใกล้เคียงกันเช่นกัน ผลการทำนายสัมประสิทธิ์แรงต้านของ แบบจำลองการไหลปั่นป่วนที่เกิดขึ้นนี้แสดงให้เห็นว่าแรงต้านจะมีขนาดไม่เปลี่ยนแปลงกันมาก ระหว่างช่วงอัตราการหมุนไร้หน่วยที่มากกว่า 2 เป็นต้นไป

5.1.2 Reynolds number 70,026 (ช่วง sub-critical Reynolds number) สอบเทียบด้วยผล การทดลอง

1) ค่าเวลาเฉลี่ยของสัมประสิทธิ์แรงยกของอากาศพลศาสตร์ ไหลผ่านทรงกลมที่สภาวะหยุดนิ่ง (**α** = 0, ด้านซ้าย) และอัตราการไหลไร้หน่วยที่ 5 (**α** = 5, ด้านขวา) ของแบบจำลองคณิตศาสตร์ the Navier-Stokes Equation และ the Reynolds Stress Model

สมการ the Navier-Stokes (Laminar) Equation

(ก) สมการ the Reynolds Stress Model

(ข)

ภาพที่ 5.4 ค่าเวลาเฉลี่ยของสัมประสิทธิ์แรงยกที่สภาวะเรย์โนลด์ 70,026 วิเคราะห์ผลโดยแบบจำลองสมการ the (ก) Navier-Stokes Equation และ (ข) Reynolds Stress Model

ภาพที่ 5.4 แสดงถึงรูปแบบของสัมประสิทธิ์แรงยกที่กระทำกับวัตถุทรงกลมในระนาย 3 มิติ ที่สภาวะเรย์โนลด์ 70,026 นั้นมีความกวัดแกว่งเช่นเดียวกันกับที่สภาวะเรย์โนลด์ 10,000 อย่างไรก็ ตามการทำนายผลที่สภาวะการไหลผ่านทรงกลมหยุดนิ่ง โดยแบบจำลองคณิตศาสตร์ the Reynolds Stress Model ในช่วงเวลาเริ่มต้นที่ t* < 90 นั้น เกิดพฤติกรรม Reversal Magnus Force เกิดขึ้นที ซึ่งเป็นผลมาจากตำแหน่งของ The Stagnation Point ที่เป็นจุดที่เกิดการแยกตัวของของไหลอิสระ เนื่องจากไม่สามารถไหลผ่านในแนวขนานกับทิศทางการไหลอิสระได้ทำให้เกิดการเปลี่ยนทิศทางการ ไหลอันเนื่องมาจากความดันที่สูง จึงทำให้ลักษณะทิศทางของแรงยกตรงข้ามกับการวิเคราะห์โดย แบบจำลอง the Navier-Stokes Equation สำหรับรูปร่างแอมปลิจูดของกราฟหรือความไร้รูปร่าง ของกราฟอธิบายได้ไปในแนวทางเดียวกันกับที่สภาวะเรย์โนลด์ 10,000 ซึ่งอยู่ในช่วงเรย์โนลด์ที่มี ลักษณะเลเยอร์ที่ผนังกับบริเวณกระแสวนหลังทรงกลมแบบเดียวกัน 2) ค่าเวลาเฉลี่ยของสัมประสิทธิ์แรงต้านของอากาศพลศาสตร์ ไหลผ่านทรงกลมที่สภาวะหยุดนิ่ง (**α** = 0, ด้านซ้าย) และอัตราการไหลไร้หน่วยที่ 5 (**α** = 5, ด้านขวา) ของแบบจำลองคณิตศาสตร์ the Navier-Stokes Equation และ the Reynolds Stress Model

<u>สมการ the Navier-Stokes (Laminar) Equation</u>

(ก)

<u>สมการ the Reynolds Stress Model</u>

ภาพที่ 5.5 ค่าเวลาเฉลี่ยของสัมประสิทธิ์แรงต้านที่สภาวะเรย์โนลด์ 70,026 วิเคราะห์ผลโดยแบบจำลองสมการ the (ก) Navier-Stokes Equation และ (ข) Reynolds Stress Model

ภาพที่ 5.5 แสดงถึงสัมประสิทธิ์แรงต้านที่ของไหลกระทำกับทรงกลม ที่สภาวะเรย์โนลด์ 70,026 ลักษณะของกราฟยังคงมีความไร้รูปร่างที่แน่นอน ซึ่งเป็นในแนวทางเดียวกันกับสัมประสิทธิ์ แรงยก ที่น่าสังเกตการทำนายผลการไหลผ่านทรงกลมหยุดนิ่ง โดยแบบจำลอง The Reynolds Stress Model มีแอมปลิจูที่น้อยซึ่งแสดงให้เห็นถึงความแตกต่างของความดันของกระแสวนด้านหลัง ที่แผ่มาจากขอบขนและขอบล่างของทรงกลมมีขนาดที่น้อย นอกจากนี้ยังพบว่าพฤติกรรมการหมุน ของทรงกลมยังไม่สามารถยับยั้งการเกิด the vortex shedding ได้ สังเกตได้จากการหมุนด้วยอัตรา การหมุนไร้หน่วยถึง 5 แล้วก็ยังไม่ทำให้การไหลอยู่ในสภาวะคงตัวได้เนื่องจากรูปร่างของกราฟยังไม่ คงที่

3) ผลการสอบเทียบแรงพลศาสตร์ที่สภาวะทรงกลมหยุดนิ่ง

เมื่อทำการสอบเทียบการไหลผ่านวัตถุทรงกลมที่สภาวะหยุดนิ่งกับ การทดลองก่อนหน้า (Achenbach, 1972) (Kray et al., 2012) ดังตารางที่ 5.2 เพื่อใช้ในการวิเคราะห์การไหลผ่านวัตถุ ทรงกลมที่หมุนที่สภาวะเรย์โนลด์ 70,026 พบว่า แบบจำลองการไหล the Navier-Stokes Equation และ the Linear และ Quadratic-high Re k-**E** model และ the Reynolds Stress Model ให้ผลการสอบเทียบที่ดีเพราะได้ค่าสัมประสิทธิ์แรงยกและแรงต้านที่ใกล้เคียงกับค่าอ้างอิง สอบเทียบ

ตารางที่ 5.2	สัมประสิทธิ์แรงยกและเ	เรงต้าน <mark>ที่การไห</mark> ลผ่า	นทรงกลมหยุดนิ่งในก	ารวิเคราะห์ที่สภาวะ	ะเรย์โนลด์
70,026					

	สัมประสิทธิ์แรงพลศาสตร์		
MEN 18 140	แรงยก	แรงต้าน	
Experiment: Achenbach (1972)	ไม่แสดงผล	0.51	
Experiment: Kray et al (2012) Re 68,000	0.00	0.57	
(งานวิจัยนี้)			
the Navier - Stoke Equation (Laminar Model)	0.00	0.49	
the Linear high Re k- <mark>8</mark> Model ประกอบด้วย สมการที่ผนัง standard wall	0.00	0.34	
function			
the Quadratic high Re k- E Mo del <mark>ประกอบด้วย สมการที่ผนัง stan</mark> da <mark>r</mark> d wall	0.00	0.39	
function			
the Reynolds Stress Equation Model ประกอบด้วย สมการที่ผนัง standard wall	0.00	0.46	
function			

4) ผลวิเคราะห์แรงพลศาสตร์ที่สภาวะทรงกลมหมุน

<u>ก) การไหลผ่านวงกลมใน 2 มิติ</u>

ภาพที่ 5.6ก แสดงผลการวิเคราะห์หาค่าสัมประสิทธิ์แรงยก (lift coefficient) และภาพที่ 5.6ข แสดงค่าสัมประสิทธิ์แรงต้าน (drag coefficient) เมื่อของไหลไหลผ่านรูปวงกลมที่หยุดนิ่งจะไม่เกิด แรงยกซึ่งแสดงโดยค่าสัมประสิทธิ์แรงยกเป็น 0 แต่จะเกิดแรงต้านที่ 1.07 ซึ่งมีค่ามากกว่าการทดลอง ของไหลไหลผ่าน "ทรงกลม" ของ Achenbach (1972) และของไหลไหลผ่าน "ทรงกระบอก" ของ Reid (1924) ที่ได้ค่าที่ 0.51 และ 0.65 ตามลำดับ ในขณะที่วัตถุหน้าตัดวงกลมที่หมุนนั้น มีผลทำให้ ค่าสัมประสิทธิ์แรงยกเพิ่มขึ้นเรื่อยๆ จาก 0 เป็น 4.33 และค่าสัมประสิทธิ์แรงต้านมีแนวโน้มลดลงจาก 1.07 เป็น 0.46 ที่ค่าการหมุนไร้หน่วยที่ 2 ซึ่งจากแนวโน้มที่เป็นไปในแนวทางเดียวกันของการ ทำนายด้วยการศึกษาเชิงคำนวณของวงกลม 2 มิติของหน้าตัดวงกลมครั้งนี้กับการทดลองการไหล ผ่านทรงกระบอกที่หมุน ทำให้ระบุได้ว่าการพิจารณาการไหลผ่านทรงกลมโดยพิจารณาจากวัตถุ เว็อกลางที่เป็นวงกลมใน 2 มิติไม่สามารถใช้ทำนายพฤติกรรมการไหลผ่านของทรงกลมใน 3 มิติได้ เนื่องจากผลการวิเคราะห์ที่ได้จะบ่งบอกถึงการไหลผ่านทรงกระบอกใน 2 มิติได้เท่านั้น

(ก)

(ข)

ภาพที่ 5.6 ผลการวิเคราะห์แรง<mark>พลศาสตร์ของของไหลผ่า</mark>นวงกลมที่หมุนในการวิเคราะห์แบบ 2 มิติ สัมประสิทธิ์ (ก) แรงย<mark>ก และ (ข) แร</mark>งต้าน ที่สภาวะเรย์โนลด์ 70,026

<u>ข) การไหลผ่านวงกลมใน 3 มิติ</u>

การวิเคราะห์แรงพลศาสตร์ที่กระทำกับทรงกลมที่หมุนใน 3 มิติ นั้นแสดงดังภาพที่ 5.7 โดย เมื่อทำการวิเคราะห์สัมประสิทธิ์แรงยกที่เกิดขึ้นในสภาวะการหมุนไร้หน่วยถึง 5 นั้น แต่ละ แบบจำลองได้แสดงถึงค่าสัมประสิทธิ์แรงยกที่มีขนาดสูงสุดอยู่ที่อัตราการหมุนไร้หน่วยที่ไม่เกิน 1 ดังนี้ คือ 0.36 0.42 0.36 และ 0.36 และลดลงจนกระทั่งคงที่ ด้วยการทำนายจากแบบจำลองทาง คณิตศาสตร์ the Navier-Stokes Equation และ the high-Re Linear k-& model และ the high-Re Quadratic k-& model และ the Reynolds Stress Model ตามลำดับ ซึ่งเป็นข้อมูลที่ สำคัญในการใช้ออกแบบอัตราการหมุนใช้งานที่ต้องการโดยไม่ฟุ่มเฟือยการหมุนที่เร็วเกินไป โดยมี กราฟที่วิเคราะห์ได้เป็นไปในแนวทางเดียวกันกับการทดลองของ Kray, Franke and Frank (2012) อย่างไรก็ตามพบว่าการไหลผ่านทรงกลมที่หมุนนั้นขนาดสัมประสิทธิ์แรงยกที่เกิดขึ้นถือว่ามีปริมาณ น้อยไม่เกิน 1 เมื่อเปรียบเทียบการไหลผ่านทรงกระบอกในระนาบ 2 มิติ ตามภาพที่ 5.6(ก)

สำหรับการวิเคราะห์สัมประสิทธิ์แรงต้านที่สภาวะเรย์โนลด์นี้มีลักษณะใกล้เคียงกันกับที่ สภาวะเรย์โนลด์ 10,000 ซึ่งพฤติกรรมการหมุนของทรงกลมยังไม่สามารถยับยั้งการเกิดแรงต้านได้ หมด แต่อย่างไรก็ตามการเพิ่มขึ้นของแรงต้านได้คงตัวจนกระทั่งอัตราการหมุนไร้หน่วยถึง 2 ทุก แบบจำลองการไหลปั่นป่วนให้ผลลัพธ์ค่าที่ใกล้เคียงกับการทดลองของ Sareen *et al.* (2019) และที่ อัตราการหมุนไร้หน่วยสูงกว่านั้นการวิเคราะห์ผลด้วยทุกแบบจำลองการไหลปั่นป่วนค่อนข้าง ใกล้เคียงกัน ผลการทำนายสัมประสิทธิ์แรงต้านของแบบจำลองการไหลปั่นป่วนที่เกิดขึ้นนี้แสดงให้ เห็นว่าแรงต้านจะมีขนาดไม่เปลี่ยนแปลงกันมากและถือว่ามีขนาดเกิดขึ้นน้อยกว่า 0.58 และ 0.6 ที่ อัตราการหมุนไร้หน่วยที่ 3 และ 1 สำหรับแบบจำลองการไหลปั่นป่วน the Reynolds Stress Model และ แบบจำลองการไหลทั่วไป the Navier-Stokes Equation ตามลำดับ

ภาพที่ 5.7 ผลการวิเคราะ<mark>ห์แรงพลศาสตร์ของของไหลผ่านวัตถุทรงกลม</mark>ที่หมุน สัมประสิทธิ์ (ก) แรงยก และ (ข) แรงต้าน ที่สภาวะเรย์โนลด์ 70,026

อย่างไรก็ตามยังพบความคลาดเคลื่อนเกิดขึ้นอย่างชัดเจนแต่ไม่มีผลต่อการขับเคลื่อนวัตถุ ทรงกลมในการนำไปใช้จริงตามภาพที่ 5.7 เมื่อเทียบกับการไหลผ่านทรงกระบอกที่หมุนตามการ อ้างอิงในภาพที่ 2.1 ที่สภาวะเรย์โนลด์ 69,000 อัตราการหมุนไร้หน่วยที่ 1.6 ได้สัมประสิทธิ์แรงยกที่ 2.6 ในขณะที่การวิเคราะห์เชิงคำนวณในกรณีทรงกลมได้สัมประสิทธิ์แรงยกน้อยกว่า 0.5 จึงถือได้ว่า แรงพลศาสตร์ที่เกิดขึ้นในองค์ประกอบแรงยกและแรงต้านมีขนาดไม่มากนัก ทำให้เมื่อเกิดการคาด เคลื่อนเล็กน้อยแต่จะส่งผลให้ร้อยละความคลาดเคลื่อนมาก โดยเมื่อทำการวิเคราะห์ผลการทดลองที่ สภาวะการหมุนไร้หน่วยมากกว่า 1 จะพบความคลาดเคลื่อนของการวิเคราะห์ค่าสัมประสิทธิ์แรงยก และแรงต้านที่น้อยกว่าผลการทดลองของ Kray et al. (2012) อยู่ประมาณ 0.1 – 0.2 ตามแต่ละ ชนิดของแบบจำลองคณิตศาสตร์การไหลปั่นป่วนและทั่วไป ถึงแม้ว่าการพิจารณาจะอยู่ที่สภาวะเรย์ โนลด์ที่ 70,026 ซึ่งสูงกว่าสภาวะเรย์โนลด์ที่ 68,000 ของ Kray et al. (2012) แต่ผลของความ แตกต่างของสภาวะเรย์โนลด์ที่ไม่มากนี้ไม่จัดเป็นเหตุผลของความแตกต่างของปริมาณแรงพลศาสตร์ ที่เกิดขึ้น

ภาพที่ 5.8 สัมประสิทธิ์แรงลัพธ์ที่กระทำกับทรุงกลุ่มที่หมุน (ก) แรงลัพธ์ 2 มิติ ที่สภาวะเรย์โนลด์ 70,026 และ (ข) แรงลัพธ์ 3 มิติ ที่สภาวะเรย์โนลด์ 96,000

สำหรับปัจจัยของผลความแตกต่างสามารถอธิบายได้ 3 ปัจจัย คือ ปัจจัยที่ 1 คือ ข้อมูลแรง ลัพธ์ต้องพิจารณาจากองค์ประกอบของแรง 3 มิติ ซึ่งภาพที่ 5.8 (ก) เป็นการพิจารณาข้อมูลจากแรง 2 มิติ ซึ่งที่สภาวะเรย์โนลด์ 70,026 และอัตราการหมุนไร้หน่วยตั้งแต่ 1 ผลการวิเคราะห์เชิงคำนวณ ยังมีความแตกต่างกับการทดลองประมาณ 20% ในขณะที่ ภาพที่ 5.8 (ข) ได้ผลใกล้เคียงกันแต่ สัมประสิทธิ์แรงด้านที่ภาพที่ 5.11 มีความแตกต่างกันที่อัตราการหมุนไร้หน่วยที่ 1 ซึ่งเป็นปัจจัย เกี่ยวเนื่องไปยังปัจจัยที่ 2 คือ มุมหรือทิศทางเวกเตอร์ของแรงระหว่างแต่ละแรงย่อยเทียบกับแรงลัพธ์ มีผลที่คลาดเคลื่อน โดยการวิเคราะห์นี้ใช้การวิเคราะห์ทางอ้อมจากแรงลัพธ์ใน 3 มิติที่สภาวะเรย์ โนลด์ 96,000 และปัจจัยที่ 3 คือ การศึกษาเชิงคำนวณให้ผลลักษณะเลเยอร์ที่คลาดเคลื่อน ได้แก่ ตำแหน่งของ the stagnation point ซึ่งเมื่อมีขนาด azimuthally angle ที่เล็กกว่าทำให้ได้ สัมประสิทธิ์แรงยกที่ต่ำกว่าการทดลอง (หัวข้อที่ 5.5) หรือการกระจายตัวของความดันที่มีขนาดพิสัย ของความดันที่น้อยกว่าทำให้ได้สัมประสิทธิ์แรงยกที่ต่ำกว่าการทดลอง (หัวข้อที่ 5.5) หรือ ตำแหน่ง ของมุมแยกตัวที่มากกว่าการทดลองทำให้สัมประสิทธิ์แรงต้านน้อยกว่าการทดลอง (หัวข้อที่ 5.5 และ 5.7)

นอกจากนี้ที่ที่สภาวะอัตราการหมุนไร้หน่วยระหว่าง 0.6-0.8 จะพบว่าผลการทดลองก่อน หน้าได้แสดงค่าสัมประสิทธิ์แรงยกที่ลดลงอย่างทันทีทันใด ซึ่งทำให้การวิเคราะห์ด้วยแบบจำลองการ ไหลปั่นป่วนทั้งหมดเกิดข้อจำกัดในการทำนายผลที่แม่นยำในช่วงอัตราการหมุนไร้หน่วยนี้ สาเหตุเกิด จากลักษณะเลเยอร์ที่ผนังทรงกลมเกิดการลดสภาพการไหลปั่นป่วนสู่ช่วงการปรับเปลี่ยนตัวระหว่าง การไหลแบบราบเรียบ-ปั่นป่วนขึ้น ซึ่งระดับความเข้มของการไหลแบบปั่นป่วนลดลงตาม (Aoki & Ito, 2001) และส่งผลให้ตำแหน่งของ the azimuthally angle ของ ตำแหน่ง the stagnation point มีมุมที่ลดลงทำให้ค่าสัมประสิทธิ์แรงยกลดน้อยลงในช่วงอัตราการหมุนไร้หน่วยนี้ จาก ความคลาดเคลื่อนที่เกิดขึ้นที่มีลักษณะการลดลงทันทีทันใดของสัมประสิทธิ์แรงยกนี้ จะแสดงผล ในช่วงอัตราการหมุนไร้หน่วยน้อยกว่า 1 ช่วงอื่นตามสภาวะเรย์โนลด์ที่สูงกว่านี้ที่ถูกทดสอบใน งานวิจัยนี้

<u>5.1.3 Reynolds Number 96,000</u> (ช่วง sub-critical Reynolds number) สอบเทียบด้วยผล การทดลอง

1) ค่าเวลาเฉลี่ยของสัมประสิทธิ์แรงยกของอากาศพลศาสตร์ใหลผ่านทรงกลมที่สภาวะหยุดนิ่ง (**α** = 0, ด้านซ้าย) และอัตราการไหลไร้หน่วยที่ 5 (**α** = 5, ด้านขวา) ของแต่ละแบบจำลองคณิตศาสตร์ the Navier-Stokes Equation และ the Reynolds Stress Model

สมการ the Navier-Stokes (Laminar) Equation

(ข)

0.30

ภาพที่ 5.9 ค่าเวลาเฉลี่ยของสัมประสิทธิ์แรงยกที่สภาวะเรย์โนลด์ 96,000 วิเคราะห์ผลโดยแบบจำลองสมการ the (ก) Navier-Stokes Equation และ (ข) Reynolds Stress Model

ภาพที่ 5.9 แสดงถึงรูปแบบของสัมประสิทธิ์แรงยกที่กระทำกับวัตถุทรงกลมในระนาย 3 มิติ นั้นมีความกวัดแกว่งที่มากเช่นเดียวกันกับที่สภาวะเรย์โนลด์ 10,000 และ 70,026 ซึ่งระดับความ กว้างของแอมปลิจูดที่สภาวะการไหลผ่านวัตถุทรงกลมในสภาวะหยุดนิ่งด้วยแบบจำลอง the Navier-Stokes Equation นั้นส่งผลให้เกิดการกวัดแกว่งที่กว้างกว่าการวิเคราะห์ด้วยแบบจำลอง the Reynolds Stress Model ในขณะที่การวิเคราะห์ในสภาวะการหมุนด้วยแบบจำลอง the Reynolds Stress Model ให้แอมปลิจูดที่สูงกว่า ในทำนองเดียวกันกับการอธิบายผลที่สภาวะเรย์ โนลด์ก่อนหน้าซึ่งมีความเกี่ยวข้องกับพิสัยความดันที่เกิดรอบตัวทรงกลมนั่นเอง และการวิเคราะห์ผล จากทั้งสองแบบจำลองนี้ ได้แสดงถึงพฤติกรรมที่อยู่นอกช่วงการไหลวิกฤติ (the critical Reynolds number range) ซึ่งเกิดการแผ่เส้นทางกระแสวนสลับจากขอบด้านบนและขอบล่างของทรงกลม

2) ค่าเวลาเฉลี่ยของสัมประสิทธิ์แรงต้านของอากาศพลศาสตร์ ไหลผ่านทรงกลมที่สภาวะหยุดนิ่ง (**Q** = 0, ด้านซ้าย) และอัตราการไหลไร้หน่วยที่ 5 (**Q** = 5, ด้านขวา) ของแต่ละแบบจำลองคณิตศาสตร์ the Navier-Stokes Equation และ Reynolds Stress Model

สมการ the Navier-Stokes (Laminar) Equation

(ก)

<u>สมการ the Reynolds Stress Model</u>

ภาพที่ 5.10 แสดงถึงสัมประสิทธิ์แรงต้านที่ของไหลกระทำกับทรงกลม การวิเคราะห์ผลผ่าน วัตถุทรงกลมในสภาวะหยุดนิ่งทั้งสองแบบจำลองนี้แสดงการไร้แรงต้านจากช่วงเวลาไร้หน่วยเริ่มต้น แล้วเพิ่มขึ้นที่เวลาไร้หน่วยที่ 3 แล้วจึงลดลงสู่ค่าแรงต้านเฉลี่ยคงตัว ลักษณะของกราฟยังคงมีความไร้ รูปร่างที่แน่นอน ซึ่งเป็นในแนวทางเดียวกันกับสัมประสิทธิ์แรงยก แต่ขนาดของแอมปลิจูดของ สัมประสิทธิ์แรงต้านในแต่ละช่วงเวลาที่เกิดขึ้นนั้นมีขนาดต่ำกว่าสัมประสิทธิ์แรงยก และหากทรงกลม มีการหมุนด้วยอัตราการหมุนไร้หน่วยถึง 5 แล้วก็ยังไม่ทำให้การไหลอยู่ในสภาวะคงตัวเนื่องจาก รูปร่างของกราฟยังไม่เป็นเส้นตรง ซึ่งสามารถอธิบายพฤติกรรมที่เกี่ยวข้องดังเช่นสภาวะเรย์โนลด์ก่อน หน้า

3) ผลการสอบเทียบแรงพลศาสตร์ที่สภาวะทรงกลมหยุดนิ่ง

เมื่อทำการสอบเทียบการไหลผ่านวัตถุทรงกลมที่สภาวะหยุดนิ่งกับ การทดลองก่อนหน้า (Achenbach, 1972) (Kray et al., 2012) (Kray et al., 2014) (Kim et al., 2013) (Norman et al., 2011) ดังตารางที่ 5.3 เพื่อใช้ในการวิเคราะห์การไหลผ่านวัตถุทรงกลมที่หมุนที่สภาวะเรย์โนลด์ 96,000 พบว่า การทดลองของ Kray, Franke and Frank (2014) และ Norman, Kerrigan and McKeon (2011) ได้ผลลัพธ์แบบแรงไม่สมมาตรรอบแกนขนานกับทิศทางการไหลเนื่องจากค่า สัมประสิทธิ์แรงยกมีค่าไม่เท่ากับศูนย์ สำหรับแบบจำลองการไหล the Navier-Stokes Equation และ the Reynolds Stresses Model ให้ผลการสอบเทียบที่ดีเพราะได้ค่าสัมประสิทธิ์แรงยกและ แรงต้านที่ใกล้เคียงกับค่าอ้างอิงสอบเทียบ

ตารางที่	5.3	สัมประสิทธิ์แ	รงยกและแร <mark>ง</mark>	ด้านที่การไ	หลผ่านทร _ั	งกลมหยุดเ	ิ่งในการ	วิเคราะห์ที	สภาวะเรย	ย์โนลด์
96,000										

ຍອ ຄວາເວີລັຍ	สัมประสิทธิ์แรงพลศาสตร์		
MUN 118 140	แรงยก	แรงต้าน	
Experiment: Achenbach (1972)	ไม่แสดงผล	0.50	
Experiment: Kray et al (2012) Re 96,000	0.01	0.52	
Experiment: Kray et al (2014) Re 96,000	-0.03	0.50	
Experiment: Kim et al (2013) Re 100,000	0.00	0.52	
Experiment: Norman et al (2011) Re 110,000	0.07	ไม่แสดงผล	
(งานวิจัยนี้)			
the Navier - Stoke Equation Model (Laminar Model)	0.00	0.49	
the Linear high Re k- $m{\epsilon}$ Model ประกอบด้วย สมการที่ผนัง standard wall	0.00	0.34	
function			
the Quadratic high Re k- $m{arepsilon}$ Model ประกอบด้วย สมการที่ผนัง standard wall	0.00	0.40	
function			
the Reynolds Stress Equation Model ประกอบด้วย สมการที่ผนัง standard wall	-0.02	0.46	
function			

4) ผลวิเคราะห์แรงพลศาสตร์ที่สภาวะทรงกลมหมุน

การวิเคราะห์แรงพลศาสตร์ที่กระทำกับทรงกลมที่หมุนนั้นแสดงดังภาพที่ 5.11 โดยเมื่อทำ การวิเคราะห์สัมประสิทธิ์แรงยกที่เกิดขึ้นในสภาวะการหมุนไร้หน่วยถึง 5 นั้น แต่ละแบบจำลองได้ แสดงถึงค่าสัมประสิทธิ์แรงยกที่มีขนาดสูงสุดอยู่ที่อัตราการหมุนไร้หน่วยที่ไม่เกิน 2 ซึ่งค่าสัมประสิทธิ์ แรงยกสูงสุดแต่ละแบบจำลอง คือ 0.36 0.40 0.36 และ 0.36 สำหรับการวิเคราะห์ด้วยแบบจำลอง การไหลทั่วไปและแบบปั่นป่วน the Navier-Stokes Equation และ the high-Re Linear k- ϵ model และ the high-Re Quadratic k- \mathcal{E} model และ the Reynolds Stress Model ตามลำดับ โดยเมื่ออัตราการหมุนสูงขึ้นจนถึงค่าการหมุนไร้หน่วยที่ 5 นั้นพบว่าทุกแบบจำลองได้ทำนายค่า ้สัมประสิทธิ์แรงยกลดลงเป็น 0.10 0.18 0.18 และ 0.18 ตามลำดับ นอกจากนี้พบกว่าสัมประสิทธิ์ แรงยกของการทดลองของ Kim et al. (2013) จะมีขนาดน้อยกว่าศูนย์ที่ช่วงอัตราหมุนไร้หน่วย ระหว่าง 0.4 – 0.7 ซึ่งแสดงถึงปรากฏการณ์ที่ แรงแมกนัสผกผัน (the reversal Magnus effect) ้แต่การวิเคราะห์ผลด้วยแบบจำลองกา<mark>รไหลปั่นป่</mark>วนไม่<mark>ส</mark>ามารถให้ค่าแม่นยำในช่วงนี้เนื่องจาก ้แบบจำลองการไหลปั่นป่วนให้ผลที่<mark>แม่นยำหากขอ</mark>บเขตเ<mark>ล</mark>เยอร์การไหลที่ผนังเป็นรูปแบบการไหล ้ ปั่นป่วนสมบูรณ์ (fully wall turbulent layer) ซึ่งในช่วงการไหลที่อัตราการหมุนไร้หน่วยนี้ลักษณะ ขอบเลเยอร์การไหลอยู่ในรูปแบ_{บช่วง}ปรับตัวระหว่างการไหล<mark>ร</mark>าบเรียบและการไหลปั่นป่วน และใน การวิเคราะห์ครั้งนี้ได้ใช้สมการไห<mark>ลทั่วไป the Navier-Sto</mark>kes Equation มาวิเคราะห์เพื่อพิจารณา ้ลักษณะปรากฏการณ์นี้ยังส่งผลความคลาดเคลื่อนในช่วงพฤติกรรม the reversal Magnus effect ด้วย ซึ่งมีความแตกต่าง<mark>จากงานวิจัยก่อนหน้าที่วิเคราะห์การไหลใน</mark>ช่วง the reversal Magnus effect ของการไหลผ่านทรงกระบอกที่หมุนที่สภาวะเรย์โนลด์ 130,000 โดยแบบจำลองการไหล ทั่วไปนี้สามารถทำการวิเคราะห์ได้ (Ruchayosyothin, 2019)

สำหรับการวิเคราะห์สัมประสิทธิ์แรงต้านที่สภาวะอัตราการหมุนไร้หน่วยถึง 1 ทุกแบบจำลอง การไหลทั่วไปและปั่นป่วนให้ผลลัพธ์ที่มีแนวโน้มเพิ่มขึ้น และที่อัตราการหมุนไร้หน่วยสูงกว่า 2 นั้น การวิเคราะห์ผลด้วยแบบจำลองต่างๆ ค่อนข้างใกล้เคียงกัน ซึ่งมีค่าอยู่ระหว่าง 0.5 – 0.6 ผลการ ทำนายสัมประสิทธิ์แรงต้านของแบบจำลองการไหลปั่นป่วนที่เกิดขึ้นนี้แสดงให้เห็นว่าแรงต้านจะมี ขนาดไม่เปลี่ยนแปลงกันมากระหว่างช่วงอัตราการหมุนไร้หน่วยที่มากกว่า 2 เป็นต้นไป

ภาพที่ 5.11 ผลการวิเคราะห์แรงพลศาสตร์ของของไหลผ่านวัตถุทรงกลมที่หมุน สัมประสิทธิ์ (ก) แรงยก และ (ข) แรงต้าน ที่สภาวะเรย์โนลด์ 96,000

<u>1.4 Reynolds number 134,000</u> (ช่วง sub-critical Reynolds number) สอบเทียบด้วยผลการ ทดลอง

1) ค่าเวลาเฉลี่ยของสัมประสิทธิ์แรงยกของอากาศพลศาสตร์ใหลผ่านทรงกลมที่สภาวะหยุดนิ่ง (**α** = 0, ด้านซ้าย) และอัตราการไหลไร้หน่วยที่ 5 (**α** = 5, ด้านขวา) ของแต่ละแบบจำลองคณิตศาสตร์ the Navier-Stokes Equation และ the Reynolds Stress Model

สมการ the Navier-Stokes (Laminar) Equation

สมการ the Reynolds Stress Model

(ข)

ภาพที่ 5.12 ค่าเวลาเฉลี่ยของสัมประสิทธิ์แรงยกที่สภาวะเรย์โนลด์ 134,000 วิเคราะห์ผลโดยแบบจำลอง สมการ the (ก) Navier-Stokes Equation และ (ข) Reynolds Stress Model

ภาพที่ 5.12 แสดงถึงรูปแบบของสัมประสิทธิ์แรงยกที่กระทำกับวัตถุทรงกลมในระนาย 3 มิติ ที่สภาวะเรย์โนลด์ 134,000 นั้นมีความกวัดแกว่งที่มากขึ้นกว่าที่สภาวะก่อนหน้า โดยเป็นผลมาจาก ความปั่นป่วนและระดับพลังงานการไหลปั่นป่วนที่มากขึ้น อีกทั้งที่สภาวะเรย์โนลด์นี้เป็นช่วงที่สภาพ การไหลอยู่ใกล้ช่วงสภาวะการไหลวิกฤต อย่างไรก็ตามการไหลในแต่ละช่วงเวลายังคงเป็นไปอย่างไร้ ทิศทาง แต่ยังคงสื่อถึงการเกิดแผ่ขยายของเส้นทางกระแสวนที่เกิดขึ้นจากทีละขอบระหว่างด้านบน และด้านล่างซึ่งก่อให้เกิดการสลับกันของขนาดความดันที่สูงในแต่ละด้าน

2) ค่าเวลาเฉลี่ยของสัมประสิทธิ์แรงต้านของอากาศพลศาสตร์ใหลผ่านทรงกลมที่สภาวะหยุดนิ่ง (**α** = 0, ด้านซ้าย) และอัตราการไหลไร้หน่วยที่ 5 (**α** = 5, ด้านขวา) ของแต่ละแบบจำลองคณิตศาสตร์ the Navier-Stokes Equation และ Reynolds Stress Model

สมการ the Navier-Stokes (Laminar) Equation

สมการ the Reynolds Stress Model

(ข)

ภาพที่ 5.13 ค่าเวลาเฉลี่ยของสัมประสิทธิ์แรงต้านที่สภาวะเรย์โนลด์ 134,000 วิเคราะห์ผลโดยแบบจำลอง สมการ the (ก) Navier-Stokes Equation และ (ข) Reynolds Stress Model

ภาพที่ 5.13 แสดงถึงสัมประสิทธิ์แรงต้านที่ของไหลกระทำกับทรงกลม ลักษณะของกราฟ ยังคงมีความไร้รูปร่างที่แน่นอน ซึ่งเป็นในแนวทางเดียวกันกับสัมประสิทธิ์แรงยก แต่ยังคงมีขนาดของ แอมปลิจูดของสัมประสิทธิ์แรงต้านในแต่ละช่วงเวลาที่เกิดขึ้นนั้นมีขนาดต่ำกว่าสัมประสิทธิ์แรงยก เนื่องจากการแผ่ขยายของกระแสลมวนจากขอบบนและขอบล่างที่สลับไปมานั้นแผ่ออกไปสู่ผิว ด้านหลังของทรงกลมก่อให้เกิดพิสัยความแตกต่างระหว่างความดันด้านหน้าและด้านหลังทรงกลมใน แต่ละช่วงเวลาไม่มากนัก อย่างไรก็ตามยังพบว่า หากทรงกลมมีการหมุนด้วยอัตราการหมุนไร้หน่วยถึง 5 แล้วก็ยังไม่ทำให้การไหลอยู่ในสภาวะคงตัวเนื่องจากรูปร่างของกราฟยังไม่เป็นเส้นตรง

3) ผลการสอบเทียบแรงพลศาสตร์ที่สภาวะทรงกลมหยุดนิ่ง

เมื่อทำการสอบเทียบการไหลผ่านวัตถุทรงกลมที่สภาวะหยุดนิ่งกับ การทดลองก่อนหน้า (Achenbach, 1972) (Kray et al., 2012) (Kim et al., 2013) ดังตารางที่ 5.4 เพื่อใช้ในการ วิเคราะห์การไหลผ่านวัตถุทรงกลมที่หมุนที่สภาวะเรย์โนลด์ 10,000 พบว่า แบบจำลองการไหล the Navier-Stokes Equation และ the Reynolds Stresses Model ให้ผลการสอบเทียบที่ดีเพราะได้ ค่าสัมประสิทธิ์แรงยกและแรงต้านที่ใกล้เคียงกับค่าอ้างอิงสอบเทียบ สำหรับแบบจำลองการไหล ปั่นป่วน the Linear high-Re k-**E model และ the Reynolds Stress Model ให้ค่าสัมประสิทธิ์** แรงยกที่แสดงถึงการไหลผ่านมีความไม่สมมาตรรอบแกนขนานกับทิศทางการไหลมาก โดยเฉพาะ the Quadratic high-Re k-**E model ซึ่งค่าสัมประสิทธิ์**แรงยกขนาดนี้แสดงถึงการแผ่ขยายของ กระแสลมวนเพียงด้านเดียวมีรูปแบบการไหลคล้ายกับสภาวะช่วงเรย์โนลด์วิกฤติ ในขณะที่ สัมประสิทธิ์แรงต้านมีขนาดที่ใกล้เคียงกับผลการทดลองก่อนหน้า

	สัมประสิทธิ์แรงพลศาสตร์		
MENTIZIOU		แรงต้าน	
Experiment: Achenbach (1972)	ไม่แสดงผล	0.50	
Experiment: Kim et al (2013) Re 140,000	0.00	0.52	
Experiment: Kray et al (2012) Re 151,000	0.27	0.60	
(งานวิจัยนี้)			
the Navier - Stoke Equation Model (Laminar Model)	0.00	0.49	
the Linear high Re k- $m{arepsilon}$ Model ประกอบด้วย สมการที่ผนัง standard wall function	0.19	0.36	
the Quadratic high Re k- $m{\epsilon}$ Model ประกอบด้วย สมการที่ผนัง standard wall function	0.00	0.40	
the Reynolds Stress Model ประกอบด้วย สมการที่ผนัง standard wall function	-0.02	0.48	

ตารางที่ 5.4 สัมประสิทธิ์แรงยกและแรงต้านที่การไหลผ่านทรงกลมหยุดนิ่งในการวิเคราะห์ที่สภาวะเรย์โนลด์ 134,000

4) ผลวิเคราะห์แรงพลศาสตร์ที่สภาวะทรงกลมหมุน

การวิเคราะห์แรงพลศาสตร์ที่กระทำกับทรงกลมที่หมุนนั้นแสดงดังภาพที่ 5.14 โดยเมื่อทำ การวิเคราะห์สัมประสิทธิ์แรงยกที่เกิดขึ้นในสภาวะการหมุนไร้หน่วยถึง 5 นั้น แต่ละแบบจำลองให้ค่า สัมประสิทธิ์แรงยกสูงสุดดังนี้ แบบจำลองการไหลทั่วไป the Navier-Stoke Equation ให้ค่า สัมประสิทธิ์แรงยก 0.36 และแบบจำลองการไหลปั่นป่วน the high-Re Linear k-**E** model และ the high-Re Quadratic k-**E** model และ the Reynolds Stress Model ให้ค่าสูงสุดที่ 0.40 0.35 และ 0.36 ที่อัตราการหมุนไร้หน่วยที่ 1 2 1 และ 1 ตามลำดับ จะเห็นได้ว่าสัมประสิทธิ์แรงยกมีขนาด ไม่มากนัก และการวิเคราะห์แบบจำลองนี้ยังไม่สามารถทำนายถึงพฤติกรรมสัมประสิทธิ์แรงยกผกผัน ที่อัตราการหมุนไร้หน่วยน้อยกว่า 1 ตามการทดลองของ (Kim et al., 2013; Kray et al., 2012) ได้ ซึ่งแนวทางการอธิบายดังที่สภาวะเรย์โนลด์ 96,000

สำหรับการวิเคราะห์สัมประสิทธิ์แรงต้านที่สภาวะอัตราการหมุนถึง 1 นั้น ทุกแบบจำลองการ ไหลการไหลทั่วไปและการไหบปั่นป่วนให้ผลลัพธ์เพิ่มขึ้นจนถึง 0.61 0.49 0.49 และ 0.56 ด้วยการ วิเคราะห์ผลด้วย the Navier-Stokes Equation และ the high-Re Linear k-**E** model และ the high-Re Quadratic k-**E** model และ the Reynolds Stress Model ตามลำดับ ซึ่งเป็นผลมาจาก ลักษณะขอบเลเยอร์ไม่เปลี่ยนแปลงมากนัก เช่น ตำแหน่ง stagnation point หรือ separation point หรือ re-attachment point เป็นต้น

🔵 Laminar 🗕 Linear 🔲 Quad 🛕 RSM

- ◆ Exp Kim et al (2013) Re 140,000 ◆ Exp Norman et al (2011) Re 110,000
 - ◆ Exp Achenbach (1972) ◆ Exp Kray et al (2012) Re 151,000

5.1.5 Reynolds number 583,000 สอบเทียบด้วยผลการทดลอง

1) ค่าเวลาเฉลี่ยของสัมประสิทธิ์แรงยกของอากาศพลศาสตร์ใหลผ่านทรงกลมที่สภาวะหยุดนิ่ง (**Q** = 0, ด้านซ้าย) และอัตราการไหลไร้หน่วยที่ 5 (**Q** = 5, ด้านขวา) ของแต่ละแบบจำลองคณิตศาสตร์ the Navier-Stokes Equation และ the Reynolds Stress Model

ภาพที่ 5.15 แสดงถึงรูปแบบของสัมประสิทธิ์แรงยกที่กระทำกับวัตถุทรงกลมในระนาย 3 มิติ ที่สภาวะเรย์โนลด์ 583,000 นั้นมีความกวัดแกว่งที่มาก และไร้รูปร่างที่แน่นอน อย่างไรก็ตามลักษณะ ของกราฟที่สภาวะการหมุนไร้หน่วยที่ 5 นั้น ทั้งสองแบบจำลองทางคณิตศาสตร์ได้แสดงสภาวะ สัมประสิทธิ์แรงยกผกผัน จนกระทั่งเวลามากขึ้น สัมประสิทธิ์แรงยกจึงมีขนาดมากขึ้นและกวัดแกว่ง รอบค่าเฉลี่ย critical Reynolds number range) ซึ่งแสดงถึงเกิดการแผ่เส้นทางกระแสวนทั้งขอบ ด้านและขอบบนของทรงกลมและมีองค์ประกอบของแรงกระทำในทิศทางแกนหมุนเกิดขึ้น

2) ค่าเวลาเฉลี่ยของสัมประสิทธิ์แรงต้านของอากาศพลศาสตร์ใหลผ่านทรงกลมที่สภาวะหยุดนิ่ง (**α** = 0, ด้านซ้าย) และอัตราการไหลไร้หน่วยที่ 5 (**α** = 5, ด้านขวา) ของแต่ละแบบจำลองคณิตศาสตร์ the Navier-Stokes Equation และ the Reynolds Stress Model

สมการ the Navier-Stokes (Laminar) Equation

(ข)

ภาพที่ 5.16 ค่าเวลาเฉลี่ยของสัมประสิทธิ์แรงต้านที่สภาวะเรย์โนลด์ 10,000 วิเคราะห์ผลโดยแบบจำลอง สมการ the (ก) Navier-Stokes Equation และ (ข) Reynolds Stress Model

ภาพที่ 5.16 แสดงถึงสัมประสิทธิ์แรงต้านที่ของไหลกระทำกับทรงกลม ลักษณะของกราฟ ยังคงมีความไร้รูปร่างที่แน่นอน และมีขนาดของแอมปลิจูดของสัมประสิทธิ์แรงต้านในแต่ละช่วงเวลา ที่เกิดขึ้นนั้นมีขนาดต่ำกว่าสัมประสิทธิ์แรงยก ดังเช่นการไหลที่สภาวะเรย์โนลด์ก่อนหน้า อย่างไรก็ ตามการวิเคราะห์ผลด้วยแบบจำลอง the Reynolds Stress Model ที่สภาวะทรงกลมหยุดนิ่งมีแอม ปลิจูดที่ค่อนข้างเตี้ย ซึ่งแสดงถึงการเปลี่ยนแปลงลักษณะการกระจายตัวของความดันในแต่ละ
ช่วงเวลามีการเปลี่ยนแปลงที่น้อยมาก ในขณะที่การไหลผ่านทรงกลมในสภาวะการหมุนที่อัตราหมุน
ไร้หน่วยที่ 5 ยังคงเกิดการแผ่ขยายของกระแสวนจากขอบด้านบนและด้านล่างของทรงกลมไปยัง
ด้านหลังทรงกลม และมีการเปลี่ยนแปลงลักษณะการกระจายตัวของความดันรอบทรงกลมอย่าง
ต่อเนื่อง

3) ผลการสอบเทียบแรงพลศาสตร์ที่สภาวะทรงกลมหยุดนิ่ง

เมื่อทำการสอบเทียบการไหลผ่านวัตถุทรงกลมที่สภาวะหยุดนิ่งกับการทดลองก่อนหน้า (Achenbach, 1972) (Norman et al., 2011) (Kray et al., 2012) (Kray et al., 2014) ดังตาราง ที่ 5.4 เพื่อใช้ในการวิเคราะห์การไหลผ่านวัตถุทรงกลมที่หมุนที่สภาวะเรย์โนลด์ 583,000 พบว่า แบบจำลองการไหลแบบปั่นป่วน the Linear high-Re k-**E** model ให้ค่าสัมประสิทธิ์แรงยกที่แสดง ถึงการไหลผ่านมีความไม่สมมาตรรอบแกนขนานกับทิศทางการไหลมาก และความคลาดเคลื่อนของ สัมประสิทธิ์แรงต้านมีขนาดที่น้อยเมื่อเทียบเคียงกับผลการทดลองก่อนหน้า

ตารางที่ 5.5 สัมประสิทธิ์แรงยกแล<mark>ะแรงต้านที่การไหลผ่านทรงกล</mark>มหยุดนิ่งในการวิเคราะห์ที่สภาวะเรย์โนลด์ 583,000

	สัมประสิทธิ์แรงพลศาสตร์		
MEN 18 140	แรงยก	แรงต้าน	
Experiment: Achenbach (1972)	ไม่แสดงผล	0.18	
Experiment: Kray et al (2012) Re 497,000	-0.04	0.26	
Experiment: Kray et al (2014) Re 462,000	0.00	0.26	
Experiment: Norman et al (2011) Re 410,000	0.00	0.12	
(งานวิจัยนี้)			
the Navier - Stoke Equation Model (Laminar Model)	-0.01	0.53	
the Linear high Re k- $m{\epsilon}$ Model ประกอบด้วย สมการที่ผนัง standard wall	0.12	0.19	
function			
the Quadratic high Re k- E Model ประกอบด้วย สมการที่ผนัง standard wall	0.02	0.41	
function			
the Reynolds Stress Model ประกอบด้วย สมการที่ผนัง standard wall function	0.02	0.50	

4) ผลวิเคราะห์แรงพลศาสตร์ที่สภาวะทรงกลมหมุน

การวิเคราะห์แรงพลศาสตร์ที่กระทำกับทรงกลมที่หมุนนั้นแสดงดังภาพที่ 5.17 โดยเมื่อทำ การวิเคราะห์สัมประสิทธิ์แรงยกที่เกิดขึ้นในสภาวะการหมุนไร้หน่วยถึง 0.5 นั้น แบบจำลองการไหล ปั่นป่วน the Linear high-Re k- $m{\epsilon}$ model และ the Quadratic high-Re k- $m{\epsilon}$ model และ the Reynolds Stress Model ได้ให้ค่าสัมประสิทธิ์แรงยกที่มีแนวโน้มเดียวกันกับการทดลองของ Kray, Franke and Frank (2012) และเมื่อทำการพิจารณาจนถึงอัตราการหมุนไร้หน่วยที่สูงขึ้น แต่ละ แบบจำลองได้ทำนายผลของสัมประสิทธิ์แรงยกสูงสุด ได้เป็น 0.40 0.42 และ 0.41 ที่อัตราการหมุน ไร้หน่วยที่ 3 4 และ 4 ตามลำดับ อย่างไรก็ตามสำหรับการทดลองก่อนหน้าของ Kray, Franke and Frank (2012) ได้แสดงถึงปรากฏการณ์ the reversal Magnus effect ที่อัตราการหมุนไร้หน่วยที่ น้อยกว่า 0.02 ที่ต่ำมาก และในขณะการทดลองของ Kray, Franke and Frank (2014) ไม่พบ ้ปรากฏการณ์นี้ตลอดช่วงอัตราการหมุนไร้หน่วยที่<mark>ท</mark>ดลอง

สำหรับการวิเคราะห์สัมประสิ<mark>ทธิ์แรงต้านโด</mark>ยแบบจำลองการไหลปั่นป่วน the l inear high-Re k- \mathcal{E} model was the Quadratic high-Re k- \mathcal{E} model was the Reynolds Stress Model ได้แสดงถึงการเปลี่ยนแปล<mark>งค่าเล็กน้อยไม่เกิน 0.</mark>1 ในช่วงภาวะอัตราการหมุนถึง 5 นั้น ทุก แบบจำลองการไหลการไหลทั่วไปและการไหบปั่นป่วนให้ผลลัพธ์เพิ่มขึ้นจนถึง 0.61 0.49 0.49 และ 0.56 ด้วยการวิเคราะห์ผลด้วย the Navier-Stokes Equation และ the Linear high-Re k-& model และ the Quadratic high-Re k-E model และ the Reynolds Stress Model ตามลำดับ ซึ่งเป็นผลมาจากลักษณะข<mark>อบเลเยอร์ไม่เปลี่ยนแปลงมากนัก โดยมี</mark>ค่าสูงสุด 0.45 0.48 และ 0.56 ตามลำดับ

• Exp Norman et al (2011) Re 410,000 • Exp Kray et al (2012) Re 497,000

ภาพที่ 5.17 ผลการวิเคราะห์แรงพลศาสตร์ของของไหลผ่านวัตถุทรงกลมที่หมุน สัมประสิทธิ์ (ก) แรงยก และ (ข) แรงต้าน ที่สภาวะเรย์โนลด์ 583,000

5.2. สัมประสิทธิ์โมเมนต์

เมื่อของไหลมีการไหลผ่านวัตถุทรงกลมทั้งในขณะที่หยุดนิ่งและหมุนนั้นจะก่อให้ทรงกลมนั้นมี การไหวตัวรอบแกนยอว์ (ไหวตัวทิศทาง ซ้าย-ขวา) อันเป็นผลมาจากแรงเฉือนที่ผิวเนื่องจากมีทิศทาง กระทำในแนวสัมผัสกับผิวทรงกลม โดยทิศทางของแรงหากมีขนาดมากกว่าศูนย์ (เป็นบวก) จะมีทิศ ทางตรงข้ามกับทิศทางการหมุนและหากมีปริมาณน้อยกว่าศูนย์ (เป็นลบ) จะมีทิศทางเดียวกันกับทิศ ทางการหมุนของทรงกลม

ภาพที่ 5.18(ก) – (จ) ได้แสดงถึงสัมประสิทธิ์โมเมนต์ (moment coefficient; C_M) รอบแกน หมุนของทรงกลมที่สภาวะเรย์โนลด์ระหว่าง 10,000 – 583,000 พบว่าที่สภาวะเรย์โนลด์ที่ต่ำจะมี ปริมาณสัมประสิทธิ์โมเมนต์ที่สูงมาก ซึ่งเป็นผลมาจากขนาดแรงเฉือนที่สูงซึ่งเป็นไปในแนวทาง เดียวกันกับขนาดความหนาของขอบเขตเล<mark>เยอร์กา</mark>รไหลที่สภาวะเรย์โนลด์ที่ต่ำจะมีความหนามากและ อัตราการเปลี่ยนแปลงความเร็วขนานกับผิวสัมผัสในแนวตั้งฉากกับผิวมีขนาดที่มากเช่นกัน โดย ้ปริมาณสัมประสิทธิ์โมเมนต์ที่สภาวะเริ่มต้นจากทรงกลมหยุดนิ่งจะก่อตัวในทิศทางเดียวกันกับการ และเมื่ออัตราก<mark>ารหมุนไร้หน่</mark>วยสูงขึ้นทิศทางแรงเฉือนหรือสัมประสิทธิ์โมเมนต์จะ หมุนของทรงกลม เปลี่ยนไปในทิศทางตรงกันข้ามกับการหมุนของทรงกลม ที่น่าสังเกตหากใช้สมการการไหลทั่วไป จะได้สัมประสิทธิ์โมเมนต์ที่น้อยมากโดยมี วิเคราะห์ผลจากแรงเฉือนที่สภาวะเรย์โนลด์ 583,000 ขนาดเข้าใกล้ศูนย์

(ก)

Reynolds number 70,026

Reynolds number 134,000

ภาพที่ 5.18 สัมประสิทธิ์โมเมนต์รอบทรงกลมที่หมุนที่สภาวะเรย์โนลด์ (ก) 10,000 (ข) 70,026 (ค) 96,000 (ง) 134,000 และ (จ) 583,000

5.3 สัมประสิทธิ์ของแรงกระทำด้านข้าง

เนื่องจากผลของการไหลผ่านทรงกลมเกิดกระแสการไหลใน 3 มิติ โดยเมื่อทำการวัดขนาด ของสัมประสิทธิ์ของแรงกระทำด้านข้าง (side force coefficient; C_s) ในแต่ละสภาวะเรย์โนลด์ที่ 96,000 134,000 และ 583,000 ด้วยแบบจำลองการไหลปั่นป่วน the Linear high-Re k-**ɛ** model และ the Reynolds Stress Model พบว่าขนาดของสัมประสิทธิ์แรงกระทำด้านข้างมีขนาดระหว่าง (-0.0004) – 0.02 (ทิศทางบวกพุ่งเข้า) ที่สภาวะเรย์โนลด์ 96,000 โดยขนาดที่เกิดขึ้นของทั้งสอง แบบจำลองมีขนาดที่ใกล้เคียงกันยกเว้นที่สภาวะอัตราการหมุนไร้หน่วยที่ 4 ที่ ผลการวิเคราะห์การ ไหลปั่นป่วนด้วยแบบจำลอง the Linear high-Re k-**ɛ** model และ the Quadratic high-Re k-**ɛ** model และ the Reynolds Stress Model มีขนาดน้อยมาก ดังภาพที่ 5.19 (ก)

สำหรับที่สภาวะเรย์โนลด์ที่ 134,000 และ 583,000 ดังภาพที่ 5.19(ข) และ 5.19(ค) นั้น ขนาดของสัมประสิทธิ์ของแรงกระทำด้านข้างมีทิศทางกวัดแกว่งและมีขนาดอยู่ระหว่าง (-0.0008) – 0.11 ดังที่ Kray, Franke and Frank (2012) ระบุการเกิดขึ้นของแรงกระทำด้านข้างไม่มีลักษณะที่ แน่นอน และ ภาพที่ 5.19(ง) ได้ทำการเปรียบเทียบผลของสภาวะเรย์โนลด์ต่อแรงกระทำด้านข้างด้วย แบบจำลองการไหลปั่นป่วน the Reynolds Stress Model พบว่าขนาดของสัมประสิทธิ์ของแรง กระทำด้านข้างมีค่าใกล้เคียงกัน

- Linear ▲ RSM + Exp Kray et al (2012) Re 497,000 (ค)

(१)

ภาพที่ 5.19 สัมประสิทธิ์ของแรง<mark>กระทำด้านข้าง ที่สภาวะเร</mark>ยโนลด์ (ก) 96,000 (ข) 134,000 และ (ค) 583,000 และ (ง) เปรียบเทียบผลของสภาวะเรย์โนลด์ที่เกิดขึ้น โดยแบบจำลอง the Reynolds Stress Model

5.4 องค์ประกอบย่อยของแรงกระทำพลศาสตร์

ในการวิเคราะห์แรงจากอากาศพลศาสตร์ที่กระทำกับทรงกลม พบว่าแรงลัพธ์เกิดจากอง องค์ประกอบจากแรงเนื่องจากความดันและจากแรงเฉือนที่ผิวอันเนื่องมาจากเลเยอร์การไหล โดยการ พิจารณาด้วยแบบจำลองการไหลปั่นป่วน the Linear high-Re k-E model และ the Reynolds Stress Model ที่สภาวะเรย์โนลด์ 96,000 134,000 และ 583,000 ตามลำดับ จากภาพที่ 5.20(ก) – 5.20(ฉ) พบว่าที่สภาวะการไหลผ่านทรงกลมหยุดนิ่งผลของแรงเนื่องจากความเค้นเฉือนมีขนาดที่น้อย มากเมื่อเทียบกับแรงลัพธ์ ดังนี้ การทำนายผลด้วย the Linear high-Re k-E model คิดเป็นร้อยละ 2.60 1.75 และ 1.64 ตามลำดับของสภาวะเรย์โนลด์ ในขณะที่การทำนายผลด้วย the Reynolds Stress Model คิดเป็นร้อยละ 1.12 0.95 และ 0.32 ตามลำดับของสภาวะเรย์โนลด์เช่นกัน ซึ่ง สามารถยกเว้นการพิจารณาผลของแรงอันเนื่องมาจากแรงเฉือนได้ เนื่องจากมีปริมาณน้อยกว่าร้อยละ 2 ของแรงทั้งหมด เมื่อพิจารณาสัดส่วนขององค์ประกอบของแรงย่อยในสภาวะที่ทรงกลมหมุนนั้น เห็นได้ชัด ว่าที่แนวโน้มของแรงเนื่องมากจากความดันค่อนข้างคงที่ ในขณะที่แนวโน้มของแรงเฉือนที่ผิวเพิ่มขึ้น เรื่อยๆ จนถึงสภาวะที่อัตราการหมุนไร้หน่วย 5 ร้อยละของปริมาณแรงเฉือนเมื่อเทียบกับแรงลัพธ์ ด้วยการทำนายผลด้วย the Linear high-Re k-**E** model คิดเป็นร้อยละ 7.43 6.87 และ 2.74 ตามลำดับของสภาวะเรย์โนลด์ ในขณะที่การทำนายผลด้วย the Reynolds Stress Model คิดเป็น ร้อยละ 7.49 6.77 และ 2.47 ตามลำดับของสภาวะเรย์โนลด์เช่นกัน จากภาพที่ 5.20 เห็นได้ชัดเจน ว่าหากมีการเปลี่ยนแปลงสภาวะเรย์โนลด์จะทำให้ผลของแรงเฉือนที่กระทำต่อทรงกลมในขณะหมุนมี ขนาดน้อยลง ในขณะที่ตั้งแต่อัตราหมุนไร้หน่วย 2 ผลของแรงเนื่องจากความดันมีขนาดไม่ เปลี่ยนแปลงมากนัก ซึ่งเป็นเหตุผลที่สำคัญที่ทำให้การทำนายผลสัมประสิทธิ์แรงยกและแรงต้านมี ขนาดใกล้เคียงกันในหัวข้อก่อนหน้า

<u>สภาวะเรย์โนลด์ที่ 96,000</u>

<u>สภาวะเรย์โนลด์ที่ 134,000</u>

<u>สภาวะเรย์โนลด์ที่ 583,000</u>

ภาพที่ 5.20 องค์ประกอบของแรงย่อยที่กระทำกับทรงกลมที่สภาวะเรย์โนลด์ 96,000 ด้วยแบบจำลอง (ก) the Linear high-Re k-& model และ (ข) the Reynolds Stress Model และ สภาวะเรย์โนลด์ 134,000 ด้วย แบบจำลอง (ค) the Linear high-Re k-& model และ (ง) the Reynolds Stress Model และ สภาวะเรย์ โนลด์ 583,000 ด้วยแบบจำลอง (จ) the Linear high-Re k-& model

ແລະ (ລ) the Reynolds Stress Model

ภาพที่ 5.21 ผล<mark>ของสภาวะเรย์โนลด์ต่อขนา</mark>ดองค์ประกอบของแรงพลศาสตร์

5.5 การกระจายตัวของค<mark>วามดัน</mark>

ภาพที่ 5.22 – 5.24 ได้แสดงถึงการกระจายตัวของสัมประสิทธิ์ความดันรอบระนาบกลางของ ทรงกลมพบว่าการกระจายตัวของความดันมีความสอดคล้องกันกับแนวโน้มสัมประสิทธิ์แรงยกที่อัตรา การหมุนไร้หน่วยต่างๆ หากมีการกระจายตัวของความดันมีความสมมาตรรอบแกนขนานกับทิศ ทางการไหลจะทำให้เกิดแรงยกเกิดขึ้น และในทางตรงกันข้ามหากเกิดการกระจายตัวแบบอสมมาตร จะเกิดแรงยกเกิดขึ้น โดยที่สภาวะเรย์โนลด์ 96,000 และ 134,000 ที่ทรงกลมสภาวะหยุดนิ่งจะมี ความสมมาตร แต่การกระจายตัวที่สภาวะเรย์โนลด์ 583,000 มีความอสมมาตรเนื่องมาจากการเกิด พฤติกรรมแบบไร้ทิศทางในแต่ละช่วงเวลา นอกจากนี้ความแตกต่างระหว่างความดันที่บริเวณ ด้านหน้า ($\theta \rightarrow 0^\circ$) และด้านหลัง ($\theta \rightarrow 180^\circ$) ของทรงกลมหากมีขนาดที่มากจะความสอดคล้อง กับขนาดสัมประสิทธิ์แรงต้านด้วย

การกระจายตัวของความดันที่อัตราการหมุนไร้หน่วยที่ 4 และ 5 ของทุกสภาวะเรย์โนลด์จะมี ความกวัดแกว่งที่สูงระหว่างแต่ละตำแหน่งรอบระนาบกลางของทรงกลมทำให้ยากต่อการพิจารณา ลักษณะเลเยอร์ เช่น ตำแหน่ง the stagnation point (θ_{st}) ตำแหน่งของ the suction point (θ_s) สำหรับตำแหน่งของบริเวณแยกตัวของเลเยอร์จะพิจารณาได้ยากเนื่องจากความกวัดแกว่งของการ กระจายตัวความดัน

สำหรับลักษณะสำคัญของขอบเขตเลเยอร์รอบระนาบกลางของทรงกลมที่แต่ละสภาวะเรย์ โนลด์ จากอัตราหยุดนิ่งจนถึงอัตราการหมุนไร้หน่วย 2 เป็นดังนี้ ที่สภาวะเรย์โนลด์ 96,000 พบ บริเวณ the stagnation point ที่มุม 0° -1.43° และ -1.43° บริเวณ the suction pressure ที่ ด้านขอบบนโดยผนังหมุนส่งเสริมความเร็วกับทิศทางการไหล (acceleration side) พบที่มุม 72.44° 69.96° และ 88.57° บริเวณ the suction pressure ที่ด้านขอบบนโดยผนังหมุนทางเดียวกันกับทิศ ทางการไหล (acceleration side) พบที่มุม 72.44° 98.28° และ 98.28° ตามลำดับ ที่สภาวะเรย์ โนลด์ 134,000 พบบริเวณ the stagnation point ที่มุม 0° -2.85° และ -2.85° บริเวณ the suction pressure ที่ด้านขอบบนโดยผนังหมุนทางเดียวกันกับทิศทางการไหล (deceleration side) พบที่มุม 67.95° 87.15° และ 98.28° บริเวณ the suction pressure ที่ด้านขอบบนโดยผนังหมุน ทางเดียวกันกับทิศทางการไหล (acceleration side) พบที่มุม 73.24° 98.28° และ 98.28° ตามลำดับ ที่สภาวะเรย์โนลด์ 583,000 พบบริเวณ the stagnation point ที่มุม 0° (-1×10⁻¹⁶)° และ (-1×10⁻¹⁶)° บริเวณ the suction pressure ที่ด้านขอบบนโดยผนังหมุน ทิศทางการไหล (acceleration side) พบที่มุม 69.60° 87.29° และ 84.98° บริเวณ the suction pressure ที่ด้านขอบบนโดยผนังหมุนทางเดียวกันกับทิศทางการไหล (acceleration side) พบที่มุม 67.95° และ 583,000 พบบริเวณ the stagnation point ที่มุม 0° (-1×10⁻¹⁶)° บริเวณ the suction pressure ที่ด้านขอบบนโดยผนังหมุนส่งเสริมความเร็วกับ ทิศทางการไหล (acceleration side) พบที่มุม 69.60° 87.29° และ 84.98° บริเวณ the suction pressure ที่ด้านขอบบนโดยผนังหมุนทางเดียวกันกับทิศทางการไหล (acceleration side) พบที่มุม 65.32° 66.23° และ ไม่พบที่อัตราการหมุนไร้หน่วย 2 ตามลำดับ

สำหรับทิศทางของตำแหน่งสำคัญของขอบเขตเลเยอร์การไหลยังมีแนวโน้มที่ชัดเจน โดยมี แนวโน้มเดียวกันกับการไหลผ่านทรงกระบอก โดยบริเวณ the stagnation point จะเคลื่อนตัวใน ทิศทางตรงกันข้ามกันทิศทางการหมุน เนื่องจากการไหลย้อนกลับเมื่อตำแหน่งความดันที่สูงจนของ ไหลไม่สามารถไหลผ่านได้เคลื่อนตัวไป และบริเวณ the suction points จะเคลื่อนตัวไปในทิศทาง เดียวกันกับทิศทางการหมุน เมื่ออัตราการหมุนเพิ่มขึ้น เนื่องจากเลเยอร์ของไหลมีระดับพลังงานที่ สูงขึ้นเนื่องจากการส่งเสริมความเร็วจากผนัง เมื่อเคลื่อนไปตลอดผนังจนกระทั่งระดับพลังงานการไหล น้อยกว่าแรงเฉือนที่ผนังทำให้เกิดการแยกตัวออกจากผนังขึ้นนั่นเอง

การกระจายตัวความดันที่สภาวะ Reynolds number 96,000

ภาพที่ 5.22 การกระจายตัวของความดันเฉลี่ยรอบระนาบกลางของทรงกลมที่หยุดนิ่งและหมุน ที่สภาวะเรย์โนลด์ 96,000 ด้วยแบบจำลองการไหลปั่นป่วน the Reynolds Stresses Model

การกระจายตัวความดันที่สภาวะ Reynolds number 134,000

ภาพที่ 5.23 การกระจายตัวของความดันเฉลี่ยรอบระนาบกลางของทรงกลมที่หยุดนิ่งและหมุน ที่สภาวะเรย์โนลด์ 134,000 ด้วยแบบจำลองการไหลปั่นป่วน the Reynolds Stresses Model

การกระจายตัวความดันที่สภาวะ Reynolds number 583,000

5.6 แผนภาพการไหล

ในการพิจารณาการไหลรอบทรงกลมและสนามการไหลผ่านทรงกลมแผนภาพการไหลเมื่อ พิจารณาขนาด Q-Criterion iso-surface ที่ 5 และสนามความเร็วรอบทรงกลมสภาวะหยุดนิ่งและ อัตราการหมุนไร้หน่วยที่ 5 ของการไหลผ่านสภาวะเรย์โนลด์ 96,000 134,000 และ 583,000 ด้วย การวิเคราะห์จากแบบจำลอง the Reynolds Stresses Model ดังภาพที่ 5.25(ก) – 5.25(ค) ตามลำดับ สำหรับ Q-Criterion iso-surface เป็นการสร้างปริมาตรที่สนใจ ที่มีค่าความแตกต่างกัน ระหว่างอัตราการหมุนตัวของของไหล (Ω) กับความเค้นเรย์โนลด์ (S) คือ $\mathbf{Q} = rac{1}{2} [\Omega^2 - \mathbf{S}^2]$

โดยที่อัตราการหมุนตัวของของไหลมีความสัมพันธ์ คือ
$$\Omega = \sqrt{2 \left(\frac{\partial \overline{U}_i}{\partial x_j} - \frac{\partial \overline{U}_J}{\partial x_i} \right)^2}$$
 และ

อัตราความเค้นเรย์โนลด์ของของไหลมีความสัมพันธ์ คือ (S = $\sqrt{2\left(\frac{\partial \overline{U}_i}{\partial x_j} + \frac{\partial \overline{U}_J}{\partial x_i}\right)^2}$) ดังนั้นปริมาตร ที่แสดงจะแสดงถึงขอบเขตปริมาตรที่ต้องการวิเคราะห์โดยปริมาณตามที่ระบุ (ในที่นี้ คือ 5) โดยมีการ ให้ระดับสีที่ปริมาตรของ Q-Criterion iso-surface ด้วยระดับพลังงานการไหลปั่นป่วน (k) ซึ่งแสดงที่ ด้านซ้าย และสำหรับสนามความเร็วตลอดขอบเขตการวิเคราะห์ได้แสดงบริเวณด้านขวาของแต่ละ ภาพ

จากข้อมูลภาพ 3 มิติของบริเวณปริมาตร Q-Criterion iso-surface นั้นพบว่าที่สภาวะเรย์ โนลด์สูงขึ้นนั้นส่งผลให้พบบริเวณที่มีระดับ Q-Criterion iso-surface ที่ 5 กว้างมากขึ้นตามทั้งใน สภาวะทรงกลมหยุดนิ่งและทรงกลมหมุน ซึ่งเกิดจากผลของระดับพลังงานการไหลปั่นป่วนที่สูงขึ้น นอกจากนี้หากสภาวะทรงกลมเกิดการหมุนขึ้น จะพบบริเวณพื้นที่ระดับ Q-Criterion iso-surface ที่ 5 กว้างมากขึ้น ซึ่งอยู่ที่ด้านผนังที่ทำการยับยั้งความเร็วและระดับพลังงานการไหลปั่นป่วนที่สูงจะพบ อยู่ที่บริเวณด้านผนังที่ยับยังความเร็วของไหล เช่นกัน

เมื่อทำการวิเคราะห์สนามความเร็วการไหลบริเวณระนาบกึ่งกลางที่สภาวะทรงกลมหยุดนิ่ง ทุกสภาวะเรย์โนลด์พบว่า สนามความเร็วค่อนข้างมีความสมมาตรรอบแกนกลางที่ขนานกับทิศ ทางการไหล โดยบริเวณด้านหลังทรงกลมความเร็วจะมีขนาดที่ต่ำเมื่อเทียบกับบริเวณอื่น ซึ่งเป็น บริเวณกระแสวนที่เกิดจากการแผ่ขยายของกระแสวนจากผนังทรงกลม เมื่อทรงกลมมีการหมุนขึ้น ในขณะที่เมื่อทรงกลมมีการหมุน พบว่า พื้นที่ที่มีความเร็วที่สูงมีลักษณะโอบล้อมทรงกลมเกือบรอบตัว และแนวความเร็วต่ำมีลักษณะเป็นเส้นทางที่แผ่ขยายออกจากผนังด้านยับยั้งความเร็วสู่พื้นที่วิเคราะห์ ด้านนอกออกไป

การไหลผ่านสภาวะ Reynolds Number of 96,000

Q-Criterion Iso-Surface of 5 <u>ทรงกลมหยุดนิ่ง</u> Velocity Domain

<u>ทรงกลมหมุนที่อัตราหมุนไร้หน่วย </u>5

การไหลผ่านสภาวะ Reynolds Number of 134,000

Q-Criterion Iso-Surface of 5

Velocity Domain

<u>ทรงกลมหยุดนิ่ง</u>

<u>ทรงกลมหมุนที่อัตราหมุนไร้หน่วย 5</u>

(ข)

125

การใหลผ่านสภาวะ Reynolds Number of 583,000

Q-Criterion Iso-Surface of 5

<u>ทรงกลมหยุดนิ่ง</u>

Velocity Domain

<u>ทรงกลมหมุนที่อัตราหมุนไร้หน่วย 5</u>

RSM

(ค) 583,000 ที่สภาวะทรงกลมหยุดนิ่ง และ **Q** = 5 ด้วยแบบจำลอง

เพื่อทำการพิจารณาทิศทางของแรงเฉือน และผลของเลเยอร์การไหลที่ผิว ซึ่งลักษณะเส้นแรง เสียดทานที่ผิว (skin friction line) สามารถบ่งบอกถึงบริเวณแยกตัวของของไหล (separation flow / detachment flow) และบริเวณการไหลมาสัมผัสหลังจากแยกตัวจากผิว (re-attachment flow) ได้

การวิเคราะห์เชิงคำนวณของของไหลผ่านทางทรงกลมในมุมมองระนาบด้านส่งเสริมความเร็ว การไหล (acceleration side) และด้านยับยั้งความเร็วการไหล (deceleration side) ได้แสดงดัง ภาพที่ 5.26(ก) และ (ข) ตามลำดับ โดยผลการวิเคราะห์ด้วยแบบจำลอง the Reynolds Stress Model ได้แสดงเส้นแรงเสียดทานที่ผิวโดยมีการให้ระดับสีแบบเวลาเฉลี่ยซึ่งเป็นขนาดความเค้นเฉือน ในภาพที่ 5.27(ก) – (ค) ของสภาวะเรยโนลด์ 96,00 134,000 และ 583,000 ตามลำดับ พบว่าที่ สภาวะของไหลไหลผ่านทรงกลมในสภาวะหยุดนิ่งขนาดของแรงเฉือนที่ผิวมีขนาดลดลงผกผันกลับ ขนาดสภาวะเรยโนลด์ที่สูงขึ้น และพบแนวของบริเวณของไหลแยกตัวออกจากผิวทรงกลมทั้งสอง มุมมองซึ่งเส้นแนวแยกตัว () ซึ่งที่สภาวะเรยโนลด์ 96,000 ค่อนข้างเห็นเป็นแนวการแยกตัว ในขณะที่สภาวะเรยโนลด์ 134,000 และ 583,000 จะมีลักษณะเป็นโหนดแยกตัวจากบริเวณโฟกัส ของกระแสวน (F) และบริเวณจุดอานม้า (S) แต่บริเวณส่วนหลังของทรงกลมที่แสดงทั้งสองด้าน มุมมองพบว่าเส้นแรงเฉือนที่ผิวเกิดแนวการสัมผัสหลังการแยกตัว () และรูปร่างวิกฤติต่าง ๆ ซึ่ง เป็นผนังบริเวณที่ติดกับบริเวณการแผ่ออกของกระแสวนจากผนังสู่บริเวณกระแสวนของของไหล ด้านหลัง และบริเวณโฟกัสของกระแสวนเส้นแรงเฉือนประกอบกับการเกิดขึ้นที่มากของบริเวณจุด อานม้า โดยการวิเคราะห์ลักษณะวิกฤติของเส้นแรงเสียดทานเป็นไปตามหลักการของ Délery (2013)

ในกรณีที่ทรงกลมมีการหมุนเกิดขึ้นที่ทุกสภาวะเรย์โนลด์นั้น เส้นแรงเสียดทานที่ผิวจะมีทิศทางใน องค์ประกอบการไหลของของของไหล คือ ทิศเดียวกันกับความเร็วของผนังในองค์ประกอบนั้นโดย ส่วนใหญ่ อีกทั้งที่สภาวะการหมุนไร้หน่วยที่ 1 ของทุกสภาวะเรย์โนลด์พบว่าการแยกตัวและการ สัมผัสหลังการแยกตัวของของไหลเกิดขึ้นที่บริเวณด้านผนังของทรงกลมที่ส่งเสริมความเร็วการไหล ของไหล โดยการแยกตัวจะเกิดขึ้นก่อนที่โหนดการแยกตัวและโหนดการสัมผัสหลังการแยกตัวพบที่ บริเวณครึ่งหลังของทรงกลม และที่ระนาบยับยั้งความเร็วของผนังทรงกลมจะพบโหนดการสัมผัสหลัง การแยกตัว และเมื่อทรงกลมหมุนเร็วเพิ่มมากขึ้นด้วยอัตราหมุนไร้ถึง 5 ทิศทางของแรงเฉือนมีทิศทาง เดียวกันกับทิศเดียวกันกับความเร็วของผนังในองค์ประกอบแกนขนานการไหลเช่นเดิม และพบแนว สัมผัสหลังแยกตัวตลอดแนวกึ่งกลางบนผนังทรงกลม

ภาพที่ 5.26 มุมการมองภาพทรงกลม ในระนาบ (ก) ส่งเสริมความเร็วการไหล (top view) และ (ข) ยับยัง คว<mark>ามเ</mark>ร็วก<mark>ารไหล (bo</mark>ttom view)

เส้นแรงเฉือนที่ผิว (skin friction line) ที่สภาวะ Reynolds Number of 96,000

Top View (Acceleration Side)

Bottom View (Deceleration Side)

เส้นแรงเฉือนที่ผิว (skin friction line) ที่สภาวะ Reynolds Number of 134,000

เส้นแรงเฉือนที่ผิว (skin friction line) ที่สภาวะ Reynolds Number of 583,000

Top View (Acceleration Side)

Bottom View (Deceleration Side) Spin ratio of 0

ภาพที่ 5.27 เส้นแรงเฉือนผิวที่กระทำกับทรงกลมที่สภาวะหยุดนิ่งและหมุน ที่สภาวะเรย์โนลด์ (ก) 96,000 (ข) 134,000 และ (ค) 583,000 วิเคราะห์ผลด้วยแบบจำลอง the Reynolds Stresses Model จากผลการวิเคราะห์การไหลของของไหลผ่านวัตถุทรงกลมที่สภาวะหยุดนิ่งและหมุนด้วย วิธีการคำนวณจะเกิดผลของแรงกระทำอันเนื่องมาจากแรงดันกระทำกับผิวและแรงเฉือนจากเลเยอร์ ของไหลบริเวณผิวทรงกลม ซึ่งเมื่อพิจารณาขนาดของแรงพลศาสตร์กระทำกับผิวทรงกลมตามเวลาจะ มีความกวัดแกว่งอันเนื่องมาจากผลของการไหลใน 3 มิติที่แต่ละระนาบมีขนาดแตกต่างกัน ส่งผลให้ สนามการไหลของของไหลมีความซับซ้อนมากกว่าการไหลผ่านรูปทรงพื้นฐานอื่น ดังนั้นการวิเคราะห์ การไหลผ่านรูปทรงนี้จึงไม่สามารถทำการวิเคราะห์ที่สภาวะ 2 มิติได้ เพราะจะถือเป็นการไหลผ่าน ทรงกระบอก และการได้มาซึ่งการลู่เข้าของคำตอบต้องกำหนดปริมาณความผิดพลาดที่ระดับต่ำมาก เพื่อให้เกิดการลู่เข้าของคำตอบและให้ได้มาซึ่งการแสดงผลทางกายภาพที่แม่นตรง

การศึกษาครั้งนี้ทำให้ได้ข้อมูลและรายละเอียดที่สำคัญทางวิทยาศาสตร์ในสภาวะเรย์โนลด์ และอัตราการหมุนที่สูง เช่น ข้อมูลเกี่ยวข้องกับแรงพลศาสตร์ที่เกิดขึ้น ปริมาณกายภาพที่เกี่ยวข้อง และบริเวณวิกฤติของเลเยอร์การไหลที่ผิวที่ตำแหน่งต่างๆ ซึ่งทั้งหมดนี้มีความเกี่ยวข้องกันเพื่อใช้ อธิบายถึงลักษณะและขนาดอันเนื่องมาจากพฤติกรรมแมกนัสอันเนื่องมาจากการหมุนของวัตถุ นอกจากนี้จากการที่มีการสอบเทียบและเปรียบเทียบถึงความแม่นตรงในการวิเคราะห์ผลจากการใช้ แบบจำลองการไหลทั่วไปและการไหลปั่นป่วนที่มีระดับการวิเคราะห์แบบจำลองการไหลพื้นฐานสู่ ระดับที่สูงขึ้นจึงสามารถใช้เป็นแนวทางในการขยายผลสู่การใช้งานจริงอื่นได้ เช่น การเกิดขึ้นของแรง ยกที่กระทำกับเรือเหาะทรงกลม หรือการประกอบกันระหว่างรูปทรงเพื่อการใช้งานของชิ้นส่วนยาน ยนต์เพื่อสร้างแรงยกจากทรงกลมกับรูปทรงพื้นฐานอื่น ต่อไป

นอกจากนี้ในส่วนผลการคำนวณของแบบจำลองการไหลปั่นป่วนในกลุ่มของ RANS model นั้นยังพบข้อจำกัดในการทำนายผลในบางสภาวะ เช่น ความคลาดเคลื่อนของแรงพลศาสตร์ที่เป็น องค์ประกอบของแรงลัพธ์เกิดขึ้นเล็กน้อยอันเนื่องมาจากองศาของทิศทางเวกเตอร์ของแรงลัพธ์ที่ เกิดขึ้นเมื่อวัตถุทรงกลมมีการหมุนที่สภาวะเรย์โนลด์ 70,026 หรือ ในช่วงที่เกิดการผันกลับของแรง แมกนัสที่เกิดขึ้นที่อัตราการหมุนไร้หน่วยในช่วง 0.6 – 0.8 ที่สภาวะเรย์โนลด์ที่สูงกว่านั้น โดย แบบจำลองการไหลปั่นป่วนไม่สามารถวิเคราะห์ได้แม่นยำอันเนื่องมาจากพฤติกรรมการไหลในช่วงนี้มี ลักษณะขอบเขตเลเยอร์การไหลที่ผนังทรงกลมอยู่ในสภาวะปรับเปลี่ยนระหว่างเลเยอร์การไหลแบบ ราบเรียบสู่การไหลแบบปั่นป่วน ซึ่งแบบจำลองการไหลปั่นป่วนที่ใช้จะสามารถทำนายผลได้แม่นยำ มากขึ้นเมื่อลักษณะขอบเขตเลเยอร์การไหลที่บริเวณดังกล่าวเป็นการไหลปั่นป่วนแบบสมบูรณ์ อย่างไรก็ตามหากทรงกลมมีการหมุนที่อัตราการหมุนไร้หน่วยมากกว่าช่วงนี้ผลการวิเคราะห์ที่ได้ สามารถใช้พิจารณากายภาพการไหลที่เกิดขึ้นได้ดี